¹⁰³Rh Chemical Shifts of [RhCl_{6-n}Br_n]³⁻

BRIAN E. MANN* and CATRIONA M. SPENCER

Department of Chemistry, The University, Sheffield S3 7HF, U.K.

Received July 6, 1982

All ten compounds $[RhCl_{6-n}Br_n]^{3-}$ have been prepared in solution in mixtures of concentrated HCl and HBr and identified by ¹⁰³Rh NMR spectroscopy. The ¹⁰³Rh chemical shifts are in the range δ 7985 for $[RhCl_6]^{3-}$ to δ 7077 for $[RhBr_6]^{3-}$ {reference $\equiv (^{103}Rh) = 3.16$ MHz}.

The recent observation of all ten compounds $[RhCl_n(OH_2)_{6-n}]^{3-n}$ by ¹⁰³Rh NMR spectroscopy has demonstrated the power of ¹⁰³Rh NMR spectroscopy to identify rhodium containing compounds in solution [1]. Before ¹⁰³Rh NMR spectroscopy becomes a useful technique to identify species in solution, it is necessary to build up a library of ¹⁰³Rh chemical shifts containing compounds which cannot be identified in easier ways, *e.g.*, ¹H, ¹³C, or ³¹P NMR spectroscopy. The series of compounds [RhCl_{6-n}Br_n]³⁻ provides a good example as it yields the substituent parameters for replacing Cl⁻ by Br⁻ and checks for any of the anomalous substitution effects found in the series [RhCl_n(OH₂)_{6-n}]³⁻ⁿ where replacement of OH₂ by Cl⁻ could produce shifts between +64 and -585 ppm.

Solutions containing $[RhCl_{6-n}Br_n]^{3-}$ were prepared by dissolving *ca*. 400 mg of commercial hydrated rhodium trichloride in *ca*. 0.5 ml D₂O and *ca*. 5 mg hydrated chromic chloride was added. This solution was diluted to 2 ml with varying mixtures of concentrated HCl and concentrated HBr. The solutions were kept at *ca*. 80 °C for 30 minutes to complete the reaction to the hexahalo complexes. The ¹⁰³Rh NMR spectra were recorded in 10 mm tubes at 12.6 MHz using a Bruker WH400 NMR spectrometer. The samples were thermostatted at a nominal 313 K to minimise broadening due to overnight temperature changes as a temperature dependence of the ¹⁰³Rh chemical shift of up to 1 ppm/°C is anticipated [2].

All ten expected compounds were detected in the various HCl/Br solutions, although the chemical shifts were somewhat (10 p.p.m.) dependent on solvent composition. There are in effect seven different chemical shift areas due to the seven possible

TABLE I. ¹⁰³Rh Chemical Shifts for $[RhCl_{6-n}Br_n]^{3-}$ in Mixtures of Concentrated Hydrochloric and Hydrobromic Acid.

Compound	δ(¹⁰³ Rh)/ppm ^a
[RhCl ₆] ³⁻	7985
$[RhCl_{s}Br]^{3-}$	7848
cis [RhCl ₄ Br ₂] ³	7707
trans-[RhCl ₄ Br ₂] ³	7712
$fac - [RhCl_3Br_3]^{3-}$	7556
mer-[RhCl ₃ Br ₃] ³⁻	7561
cis [RhCl2Br4] ³⁻	7403
trans [RhCl ₂ Br ₄] ³	7409
[RhClBr ₅] ³⁻	7243
$[RhBr_6]^{3-}$	7077

^aReference to Ξ (¹⁰³Rh) = 3.16 MHz, using the sign convention that high frequency is positive.

values of n in $[RhCl_{6-n}Br_n]^{3-}$, n = 0 to 6, each value of n being separated by ca. 150 ppm making it a trivial exercise to assign the signals to a value of n. In the cases of n = 2, 3, and 4, the signals are doublet due to cis-trans or mer-fac isomerism. The signals were assigned to the relevant isomer by both statistical probability of formation and analogy to known compounds. Thus statistically, in the absence of electronic factors, cis-isomers are more probable than trans-isomers by a factor of four, while the mer-isomer is more probable than the fac-isomer by a factor of three, and the ratios of the intensities of the ¹⁰³Rh NMR signals are in agreement with these ratios within experimental error. It is also known that cis- and fac-isomers give signals to lower frequency of trans- and mer-isomers [2]. The results are collected in Table I.

Examination of the results in the Table show that as Cl⁻ is replaced by Br⁻ the stepwise decrease in ¹⁰³Rh chemical shift changes from -136 ppm to -166 ppm and is not significantly dependent on the *trans*-ligand. This series provides yet another example of the so-called 'inverse halogen effect' [3]. This effect can be explained in terms of the Ramsey equation

$$\delta(^{103}\text{Rh}) = \frac{A\langle r_d^{-3} \rangle}{\Delta E} + C$$

where A and C are constants, ΔE is the energy difference between the highest occupied and lowest empty d-orbital, and $\langle r_d^{-3} \rangle$ is (the average radius of the d-orbital)⁻³. When the normal halogen effect

^{*}Author to whom correspondence should be addressed.

applies the ΔE term is dominant, with the weaker Br⁻ producing a smaller ΔE term than the Cl⁻ ligand. When the inverse halogen effect applies the $\langle r_d^{-3} \rangle$ term is dominant with the more covalent Br⁻ increasing the size of the d-orbitals more effectively than is found for the Cl⁻ ligand.

References

- 1 B. E. Mann and C. Spencer, Inorg. Chim. Acta, 65, L57 (1982).
- 2 See for example R. G. Goodfellow, in 'N.M.R. and the Periodic Table', ed. R. K. Harris and B. E. Mann, Academic Press, 1979, p. 248.
- 3 See for example R. G. Kidd, ref. 2, p. 208.